ar X iv : 0 71 2 . 22 30 v 3 [ m at h . D G ] 6 M ar 2 00 8 η Forms and Determinant Lines
نویسنده
چکیده
منابع مشابه
ar X iv : 0 70 4 . 35 30 v 1 [ m at h . D G ] 2 6 A pr 2 00 7 Invariant forms , associated bundles and hyperkähler metrics
We develop a method, initially due to Salamon, to compute the space of " invariant " forms on an associated bundle X = P ×G V , with a suitable notion of invariance. We determine sufficient conditions for this space to be d-closed. We apply our method to the construction of hyperkähler metrics on T CP 1 and T CP 2 .
متن کاملar X iv : 0 80 3 . 44 39 v 1 [ m at h . D S ] 3 1 M ar 2 00 8 PERIODIC UNIQUE BETA - EXPANSIONS : THE SHARKOVSKIĬ ORDERING
Let β ∈ (1, 2). Each x ∈ [0, 1 β−1 ] can be represented in the form
متن کاملar X iv : m at h . D G / 0 30 62 35 v 2 8 N ov 2 00 6 GEOMETRIC CONSTRUCTION OF MODULAR FUNCTORS FROM CONFORMAL FIELD THEORY
We give a geometric construct of a modular functor for any simple Lie-algebra and any level by twisting the constructions in [16] and [19] by a certain fractional power of the abelian theory first considered in [13] and further studied in [2].
متن کاملar X iv : 0 80 7 . 00 58 v 2 [ m at h . D G ] 1 6 Ju l 2 00 8 EQUIVARIANT DIFFERENTIAL CHARACTERS AND SYMPLECTIC REDUCTION
We describe equivariant differential characters (classifying equi-variant circle bundles with connections), their prequantization, and reduction.
متن کاملar X iv : 0 70 7 . 42 19 v 1 [ m at h . D G ] 2 8 Ju l 2 00 7 Real embeddings , η - invariant and Chern - Simons current ∗
We present an alternate proof of the Bismut-Zhang localization formula for η-invariants without using the analytic techniques developed by Bismut-Lebeau. A Riemann-Roch property for Chern-Simons currents, which is of independent interest, is established in due course.
متن کامل